Abstract
Micro-RNA (miRNA)-based regulation of hypoxia, angiogenesis and tumour growth provides promising targets for effective therapy in malignant glioblastoma multiforme (GBM).
Accumulating evidence suggests a potential role of melatonin in miRNA expression in cancer cells. Despite these findings, the melatonin-miRNA interaction in GBM and the effect of this interaction on GBM tumour development and invasion are not clearly understood.
The aim of the present study was to evaluate the effects of melatonin on human GBM tumour spheroid tumorigenesis and invasion in vitro, and to analyse the interaction between 36 angio-miRNAs and the HIF1/VEGF/MMP9 axis, which is known to be associated with the antitumour effect of melatonin.
We found that melatonin is able to selectively induce cell death in single-layer U87-MG cells (a GBM cell line) in a dose- and time-dependent manner, as characterized by MTT assay.
The use of tumour spheroids and a Matrigel invasion assay revealed that melatonin impairs tumorigenesis, and it significantly reduced both the tumour spheroid area and invasion rate, especially at the 0.5 mM and 1 mM concentrations.
This inhibition was accompanied by strong reductions in hypoxia-inducible factor 1-α (HIF1-α) and vascular endothelial growth factor (VEGF) gene expression and protein levels in GBM tumour spheroids.
In addition, melatonin significantly reduced the relative gene expression and protein levels of matrix metalloproteinase-9 (MMP-9).
This study revealed that six differentially expressed angio-miRs (miR-15b, miR-18a-5p, miR-23a-3p, miR-92a-3p, miR-130a-5p, miR-200b-3p) may play important roles in GBM tumorigenesis and invasion, and all respond to melatonin therapy.
Our results suggest that melatonin inhibits tumorigenesis and invasion of human GBM tumour spheroids, possibly by suppressing HIF1-α/VEGF/MMP9 signalling via regulation of angio-miRNAs.
See also:
- Official Web Site: The Di Bella Method;
- Melatonin use in cancer patients have started in 1974, when melatonin prepared according to Prof. Di Bella’s formulation [...]. For 11 days was administered to the patient, admitted to the general medical ward at the Maggiore-Pizzardi Hospital in Bologna, very slowly (over approx. 8 hours) and intravenously administered 1000 mg of melatonin for 11 days. During the course of each day, the patient was intravenously administered 4 saline drips of 500 ml, each containing ten 25 mg bottles of freeze-dried melatonin, lasting 2 hours, totaling 1000 mg per day. No other drug of any kind was administered in order to ascertain the effect of the MLT without interference [...]. From Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;
- About Melatonin - In vitro, review and in vivo publications;
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Complete objective response to biological therapy of plurifocal breast carcinoma.