Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C
Abstract
The effect of alpha-tocopherol (vitamin E) on the proliferation of vascular smooth muscle cells (A7r5), human osteosarcoma cells (Saos-2), fibroblasts (Balb/3T3), and neuroblastoma cells (NB2A) has been studied.
The proliferation of vascular smooth muscle cells was inhibited by physiologically relevant concentrations of alpha-tocopherol, neuroblastoma cells were only sensitive to higher alpha-tocopherol concentrations, and proliferation of the other cell lines was not inhibited.
The inhibition of smooth muscle cell proliferation was specific for alpha-tocopherol. Trolox, phytol, and alpha-tocopherol esters had no effect. Proliferation of smooth muscle cells stimulated by platelet-derived growth factor or endothelin was completely sensitive to alpha-tocopherol. If smooth muscle cells were stimulated by fetal calf serum, proliferation was 50% inhibited by alpha-tocopherol. No effect of alpha-tocopherol was observed when proliferation of smooth muscle cells was stimulated by bombesin and lysophosphatidic acid. The possibility of an involvement of protein kinase C in the cell response to alpha-tocopherol was suggested by experiments with the isolated enzyme and supported by the 2- to 3-fold stimulation of phorbol ester binding induced by alpha-tocopherol in sensitive cells. Moreover, alpha-tocopherol also caused inhibition of protein kinase C translocation induced by phorbol esters and inhibition of the phosphorylation of its 80-kDa protein substrate in smooth muscle cells.
A model is discussed by which alpha-tocopherol inhibits cell proliferation by interacting with the cytosolic protein kinase C, thus preventing its membrane translocation and activation.
See also:
- Official Web Site: The Di Bella Method;
- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Neuroblastoma: Complete objective response to biological treatment;
- Oesophageal squamocellular carcinoma: a complete and objective response;






