Targeted paclitaxel-octreotide conjugates inhibited the growth of paclitaxel-resistant human non-small cell lung cancer A549 cells in vitro

Print
Published on Friday, 08 October 2021

Abstract

The application of chemotherapy in non-small cell lung cancer (NSCLC) is limited by the toxicity to normal cells and the development of multi-drug resistance.

Targeted chemotherapy using cytotoxic analogs against specific receptors on cancer cells could be a less toxic and more efficacious approach. We identified that the expressions of somatostatin receptor (SSTR) 2 and 5 in tumor tissues from NSCLC patients were higher than those in the adjacent normal tissues by immunohistochemistry, and therefore, cytotoxic somatostatin analogues might be applied for SSTRs-mediated targeted therapy against NSCLC.

Two cytotoxic analogs, paclitaxel-octreotide (PTX-OCT) and 2paclitaxel-octreotide (2PTX-OCT), were synthesized by linking one or two molecules of paclitaxel to one molecule of somatostatin analog octreotide. PTX-OCT and 2PTX-OCT significantly inhibited the growth and induced apoptosis of SSTR2- and SSTR5-positive A549 cells, compared with the control (p < 0.01), and had less inhibitory effect on SSTR2- and SSTR5-negative H157 cells than paclitaxel (p < 0.01).

Moreover, compared with paclitaxel, PTX-OCT conjugates induced lower expression of MDR-1 gene both in vitro and in vivo.

Three A549 paclitaxel-resistant cell lines were established through different approaches, and the paclitaxel-resistant cell showed higher sensitivity to PTX-OCT conjugates than to paclitaxel, which might be because of the differential MDR-related gene expressions and cell-cycle distribution in paclitaxel-resistant A549 cells.

Our results suggested that PTX-OCT conjugates could be potentially used for SSTRs-mediated targeted therapy for NSCLC, especially for those with paclitaxel resistance and induced less multidrug resistance.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;


 


- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);

- Publication, 2018 Sep: The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature (from Di Bella's Foundation);

- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);

- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);


 


- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response.