Melatonin and Prostate Cancer: Anti-tumor Roles and Therapeutic Application
Abstract
Melatonin is an endogenous indoleamine that has been shown to inhibit tumor growth in laboratory models of prostate cancer.
Prostate cancer risk has additionally been associated with exogenous factors that interfere with normal pineal secretory activity, including aging, poor sleep, and artificial light at night. Therefore, we aim to expand on the important epidemiological evidence, and to review how melatonin can impede prostate cancer.
More specifically, we describe the currently known mechanisms of melatonin-mediated oncostasis in prostate cancer, including those that relate to the indolamine's ability to modulate metabolic activity, cell cycle progression and proliferation, androgen signaling, angiogenesis, metastasis, immunity and oxidative cell status, apoptosis, genomic stability, neuroendocrine differentiation, and the circadian rhythm.
The outlined evidence underscores the need for clinical trials to determine the efficacy of supplemental, adjunct, and adjuvant melatonin therapy for the prevention and treatment of prostate cancer.
The Di Bella's Method: Use of Melatonin, Hormone therapy (e.g. Enantone, Decapeptyl and analogues), Somatostatin/Octreotide analogues and/or derivatives, pseudo-Metronomic Chemotherapy Cyclophosphamide and/or Hydroxyurea with Cabergoline and/or Bromocriptine (together with others chemical compounds) in Prostate Cancer:
See also:
- Official Web Site: The Di Bella Method;
- Melatonin use in cancer patients have started in 1974, when melatonin prepared according to Prof. Di Bella’s formulation [...]. For 11 days was administered to the patient, admitted to the general medical ward at the Maggiore-Pizzardi Hospital in Bologna, very slowly (over approx. 8 hours) and intravenously administered 1000 mg of melatonin for 11 days. During the course of each day, the patient was intravenously administered 4 saline drips of 500 ml, each containing ten 25 mg bottles of freeze-dried melatonin, lasting 2 hours, totaling 1000 mg per day. No other drug of any kind was administered in order to ascertain the effect of the MLT without interference [...]. From Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;
- About Melatonin - In vitro, review and in vivo publications;
- Publication: Melatonin anticancer effects: Review (from Di Bella's Foundation);
- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);
- The Di Bella Method (A Variable Part - Chondroitin sulfate, up to 3-4 grams per day, orally);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
The Di Bella's Method: Use of Melatonin since 1974 - together with others chemical compounds - in several Oncological Pathologies:
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;






