Melatonin Analogue Antiproliferative and Cytotoxic Effects on Human Prostate Cancer Cells
Abstract
Melatonin has been indicated as a possible oncostatic agent in different types of cancer, its antiproliferative role being demonstrated in several in vitro and in vivo experimental models of tumors.
Specifically, melatonin was proven to inhibit cell growth of both androgen-dependent and independent prostate cancer cells, through various mechanisms. A number of melatonin derivatives have been developed and tested for their role in the prevention and treatment of neoplastic diseases.
We recently proved the in vitro and in vivo anticancer activity of UCM 1037, a newly-synthetized melatonin analogue, on melanoma and breast cancer cells. In this study we evaluated UCM 1037 effects on cell proliferation, cell cycle distribution, and cytotoxicity in LNCaP, PC3, DU145, and 22Rv1 prostate cancer cells.
We demonstrated significant dose- and time-dependent UCM 1037 antiproliferative effects in androgen-sensitive LNCaP and 22Rv1 cells. Data from flow cytometric studies suggest that UCM 1037 is highly cytotoxic in androgen-sensitive prostate cancer cells, although no substantial increase in the apoptotic cell fraction has been observed. UCM 1037 cytotoxic effects were much less evident in androgen-insensitive PC3 and DU145 cells.
Experiments performed to gain insights into the possible mechanism of action of the melatonin derivative revealed that UCM 1037 down-regulates androgen receptor levels and Akt activation in LNCaP and 22Rv1 cells.
The Di Bella's Method: Use of Melatonin (together with others chemical compounds) in Prostate Cancer:
See also:
- Official Web Site: The Di Bella Method;
- Melatonin use in cancer patients have started in 1974, when melatonin prepared according to Prof. Di Bella’s formulation [...]. For 11 days was administered to the patient, admitted to the general medical ward at the Maggiore-Pizzardi Hospital in Bologna, very slowly (over approx. 8 hours) and intravenously administered 1000 mg of melatonin for 11 days. During the course of each day, the patient was intravenously administered 4 saline drips of 500 ml, each containing ten 25 mg bottles of freeze-dried melatonin, lasting 2 hours, totaling 1000 mg per day. No other drug of any kind was administered in order to ascertain the effect of the MLT without interference [...]. From Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;
- About Melatonin - In vitro, review and in vivo publications;
- Publication: Melatonin anticancer effects: Review (from Di Bella's Foundation);
- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
The Di Bella's Method: Use of Melatonin - together with others chemical compounds - in several Oncological Pathologies:
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;