Longitudinal Analysis of 1α,25-dihidroxyvitamin D 3 and Homocysteine Changes in Colorectal Cancer
Abstract
Background: 1α,25-dihydroxycholecalciferol (1,25(OH)2D3) and homocysteine are known to play a role in the pathophysiology of colorectal cancer (CRC). In health, the two changes are inversely proportional to each other, but little is known about their combined effect in CRC.
Methods: The serum 1,25(OH)2D3 and the homocysteine levels of eighty-six CRC patients were measured, who were enrolled into four cohorts based on the presence of metastases (Adj vs. Met) and vitamin D3 supplementation (ND vs. D).
Results: 1,25(OH)2D3 was constant (Adj-ND), increased significantly (Adj-D, p = 0.0261), decreased (Met-ND), or returned close to the baseline after an initial increase (Met-D). The longitudinal increase in 1,25(OH)2D3 (HR: 0.9130, p = 0.0111) positively affected the overall survival in non-metastatic CRC, however, this effect was cancelled out in those with metastasis (p = 0.0107). The increase in homocysteine negatively affected both the overall (HR: 1.0940, p = 0.0067) and the progression-free survival (HR: 1.0845, p = 0.0073). Lower 1,25(OH)2D3 and/or higher homocysteine level was characteristic for patients with higher serum lipids, albumin, total protein, white blood cell and platelet count, male sex, and right-sided tumors. No statistically justifiable connection was found between the target variables.
Conclusions: A measurement-based titration of vitamin D3 supplementation and better management of comorbidities are recommended for CRC.
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;






