Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes.
Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC.
Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients.
Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis.
Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation.
Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC.
Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota.
This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.
See also:
- Official Web Site: The Di Bella Method;
- Melatonin use in cancer patients have started in 1974, when melatonin prepared according to Prof. Di Bella’s formulation [...]. For 11 days was administered to the patient, admitted to the general medical ward at the Maggiore-Pizzardi Hospital in Bologna, very slowly (over approx. 8 hours) and intravenously administered 1000 mg of melatonin for 11 days. During the course of each day, the patient was intravenously administered 4 saline drips of 500 ml, each containing ten 25 mg bottles of freeze-dried melatonin, lasting 2 hours, totaling 1000 mg per day. No other drug of any kind was administered in order to ascertain the effect of the MLT without interference [...]. From Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;
- About Melatonin - In vitro, review and in vivo publications;
- Publication: Melatonin anticancer effects: Review (from Di Bella's Foundation);
- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;
- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response.






